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ABSTRACT

This paper briefly outlines how a combination of various computational method-

ologies could reduce the enormous computational costs envisioned in using ad-

vanced CFD codes in gradient-based optimized multidisciplinary design (MdD)

procedures. Implications of these MdD requirements upon advanced CFD codes

are somewhat different than those imposed by a "single" discipline design. A means

for satisfying these MdD requirements for gradient information is presented which

appears to permit: first, some leeway in the CFD solution algorithms which can

be used; second, an extension to 3-D problems; and third, straighO_orward use of

other computational methodologies. Many of these observations have previously

been discussed as possibilities for doing parts of the problem more efficiently; the

contribution here is observing how they fit together in a mutually beneficial way.



INTRODUCTION

A number of observations concerning various computational methodologies relevant to large-

scale, multidisciplinary, gradient-based optimization for engineering systems design problems are

discussed. In particular, these observations address the situation where one (or more) discipline

response(s) required by the optimized design procedure involves the analysis of a system of

nonlinear partial differential equations (PDE) which, when discretized, form a very large set of

algebraic equations which must be solved iteratively. This situation occurs, for example, when

advanced computational fluid dynamics (CFD) codes are applied in a multidisciplinary sensitivity

analysis (SA) procedure for optimizing an aerospace vehicle design. This is the context in which

the following remarks are cast; however, it is felt that the present discussion and observations

have broader utility and more general applications.

This paper discusses these observations in a general way, briefly outlining how the combi-

nation of various computational methodologies could reduce the enormous computational costs

envisioned in using advanced CFD codes in an optimized multidisciplinary design (MdD) proce-

dure. Implications of these MdD requirements upon advanced CFD codes are somewhat different

than those imposed by a "single" discipline design. A means for satisfying these MdD require-

ments for gradient information is presented which appears to permit: first, some leeway in the

CFD solution algorithms which can be used; second, an extension to 3-D problems; and third,

straightforward use of other computational methodologies. Many of these observations have

previously been discussed as possibilities for doing parts of the problem more efficiently; the

contribution here is observing how they fit together in a mutually beneficial way.

The present interest and work have been stimulated by two research programs related to

incorporating advanced CFD capabilities in MdD. The NASA Langley Research Center High-

Speed Airframe Integration Research (HiSAIR) project (Refs.[1, 2]) is focused on the High-

Speed Civil Transport (HSCT) design activity in order to develop methodology and computational

environment for MdD and analysis. The emphasis is on including most of the required disciplines

and interactions at a sufficiently advanced level of analysis in order to demonstrate improved

engineering designs. The second stimulus is the NASA Computational Aerosciences (CAS)

project of the High Performance Computing and Communications (HPCC) Program (Ref.[3])

where one of the applications is the HSCT. The two major thrusts are enhanced simulations

via multidisciplinary formulations and improved computational efficiency via massively parallel

hardware. In both programs, the primary NASA Langley approach being pursued is MdD via

sensitivity analysis.

MULTIDISClPLINARY DESIGN REQUIREMENTS

A recent survey by Jameson (Ref.[4]) discusses the successes and challenges in CFD

and outlines numerical algorithms currently being used to obtain iterative solutions for the



varioussystemsof type-dependent,nonlinearPDE'smathematicallymodellingdifferentlevelsof
physicalapproximationand configurationcomplexity. Automatedoptimizationin aerodynamic
designis listedasoneof theremainingchallengesfor CFD.He primarily discussesaerodynamic
designandshapeoptimizationas"single"disciplinedesignproblems.Theseproblemscontinue
to be topicsof much interestasevidenced,for example,in thesurveyby Dulikravich (Ref.[5])
whereanumberof methodsarediscussed;andalsoin therecentworksby Jameson(Refs.[6,7])
andTa'asan,et al. (Ref.[8]) which utilize adjointapproaches.In theselatterpapers,theadjoint
variableis formed with respectto a cost function generallycomposedof both objectiveand
constraintfunctionsappropriateto asinglediscipline.For a singledisciplinedesign,theselatter
designmethodsappearto becomputationallymuchmoreefficientand thereforemore feasible
than the optimizer-basedSA methods.

Proceduresfor multidisciplinaryoptimization of engineering systems have been addressed

by Sobieski (Ref.[9]). He proposes a unified system SA guided by system sensitivity derivatives

(SD); the optimizer code or algorithm which uses these SD is the outer-most loop of the entire

design process. The objective and constraint functions are now generally composed of output

functions from several disciplines. Each single-discipline analysis code is then to supply not

only the output functions required for the constrained optimization process and other discipline

analysis inputs, but also the partial derivatives of all of these output functions with respect to its

input variables. These variables include not only the MdD variables, but also output functions

from other disciplines which implicitly depend on the MdD variables. However, the application

of advanced CFD to provide aerodynamic analyses within such procedures appears to be severely

hampered by the sheer magnitude of the computational tasks involved, particularly if these SD

must be obtained by "brute-force" finite differencing. There has been recent interest and progress

in obtaining quasi-analytical SD from advanced CFD codes as evidenced in the works by Elbanna

& Carlson (Ref.[10]); Taylor, et al. (Ref.[ll]); Baysal, et al. (Ref.[12]); and Shubin & Frank

(Ref.[ 13]), for example. As can be seen, direct solver methods have been used in 2-D problems;

however, their use in 3-D optimized MdD via SA appears highly unlikely (Ref.[10]) as a viable

approach. In the appendix of this paper, an estimate (perhaps optimistic) of the magnitude of

the advanced CFD task for steady external aerodynamics in 3-D MdD via SA is given.

IMPLICATIONS OF MdD REQUIREMENTS FOR CFD 1

In the system SA procedure of Sobieski (Ref.[9]), a CFD code must be able to compute

efficiently either the sensitivity functions, Q' (taken herein to mean _-_ ), of its solution state

vector, Q, with respect to each of its own input design variables, D, or else, the adjoint variables,

A (constructed with respect to each of its required output functions, F) in order that the required

output function SD can be formed. One concludes from the work of Shubin & Frank (Ref.[13])

that the sensitivity functions Q_ or adjoint variables A must be consistent discrete derivatives or

adjoints of the discrete solution state vector Q in order for the optimization procedure to be fully

I In this and following sections, dependencies of quantifies upon grid point indices, discipline index, unknown variable index, design variable

index, output function index, etc. have been suppressed. All equations are vector or matrix equations, generally with very large dimensions.

These indicial dependencies and dimensional estimates are given in the Appendix.



successful, i.e., converge. This aspect appears to adversely affect direct application to advanced

CFD codes; the discretized systems of equations for Q_ or A are not as well conditioned as

in other disciplines and additional errors, as noted below, may occur. Aspects of retrofitting

existing CFD codes to compute SD have been discussed in a recent report by Shubin (Ref.[14]).

In advanced CFD codes, the steady flow-field solution state vector Q is determined from

a set of discretized nonlinear algebraic equations which are solved iteratively. Symbolically,

R(Q, D, X) = 0 where the dependence of the residual R on the discrete grid X is also noted.

Iteration according to Newton's method (superscript n denotes iteration step):

OR"
---AQ"= R"(Q",D,X)

OQ (1)
Q,+I = Q, + AQ"

gives Q*, the "root" of R(Q*, D,X) = 0 at convergence. The output functions, F, required

by MdD (and analysis) consist, for example, of quantities like surface loadings (for structures),

lift-drag-moment polars (for performance), stability derivatives (for control), etc. at multiple

flow conditions. Most of these functions then are taken as F = F(Q*, D, X) where Q* and X

are usually evaluated at the configuration surface; that is, on the boundary.

The SD of a required output F with respect to an input D is then

dF OF OF_I OF_ I

= + + a-2x (2)
Thus one needs partial derivatives (sensitivity functions) such as Q' and X' (taken herein to

mean _). Note that for the "body-oriented" or surface fitted grids of modern CFD codes,

X I _ 0 (it may not even be sparse) since the surface shape design variables are included in the

set D and are "boundary-values" for the grid generation equations or problem. Some aspects

related to obtaining these derivatives are discussed in Refs.[15] and [16]. All derivatives in

Eq. (2) can be generated by "brute-force" finite differencing; but, there are drawbacks, not the

least of which is an inordinate computational task. If one applies the quasi-analytical approach

suggested by Sobieski (Ref.[17]), then from R*(Q, D, X) = 0 one obtains upon differentiating

with respect to D (recognizing that _ = 0):

OR*QI OR* OR* _ I
OQ - -fig + -if-2-x (3)

where superscript * means evaluated at Q*. This is essentially the linear equation from which

most CFD solutions for Q' have been obtained via either direct solver or iterative methods. See,

for example, (Refs.[10-13]) and the earlier references quoted by them. Comparison of Eqs.

(1) and (3) shows that if a Newton solver is used to get Q*, then sensitivity functions, Q_ ,

come essentially free for new right hand sides since _ is already known and factored. This

has been previously noted and used in 2-D problems. For 3-D CFD problems, it appears that

iterative solutions must be used to get Q' because the direct solvers require too much memory;

however, as noted in Ref.[10], many iterative algorithms for solving Eq. (3) converge very

slowly. This and the concerns expressed by Shubin (Ref.[14]) prompted the present approach

for obtaining consistent SD.



AN INCREMENTAL ITERATIVE FORM FOR CONSISTENT SD

A closer comparison of the nonlinear Eq. (1) used to obtain the solution Q and typical

iterative forms of the linear Eq. (3) used to obtain the sensitivity Q_, however, shows another

fundamental difference between the two. Eq. (1) is written in the incremental or "delta-" form

(unknown is AQ n) and the RHS vanishes when the residual R vanishes; i.e., when the implicit

discretized state equations for steady flow are satisfied. The operator on the LHS needs not

be exactly -_ in order to obtain convergence; in fact, for almost all 3-D CFD algorithms the

operator is not the Newton operator because there are truncation, iterative, and/or splitting errors.

Acceleration of an iterative solution for Q* is obtained from Eq. (1) by modifying the LHS

operator (See, for example, Ref.[4], where Jameson calls this the "correction" form).

The iterative incremental form of Eq. (3) for the sensitivity Q' is

oR" oR',OR*(Q,). + + =
(AQ')" - OQ _ .ff_-x \ dn ) (4)

(Q,),+I : (Q,), + (AQ')"

where --_ implies that the LHS operator need not be exactly -_. All that is required here is

a LHS operator approximation with good convergence properties; when the RHS vanishes (--4d_-

is zero), consistent discrete derivatives in the sense of Ref.[13] will be obtained if the discrete

approximation on the RHS of Eq. (4) is consistent with that on the RHS of Eq. (1). The detailed

computational aspects of and advantages from using Eq. (4) rather than Eq. (3) to obtain SD

for CFD solutions are discussed by Korivi, et al. (Ref.[18]).

Similar comments apply to the discrete adjoint variables A, constructed with respect to the

required output functions F. Following the procedure of Hou, et al. (Ref.[19]) an adjoint

variable A for each function F is introduced as the multiplier of R*(Q, D, X) = 0 and then

added to F so that formally one obtains

_'(Q,D,X)= F(Q,D,X)+ ATR*(Q,D,X) (5)

where superscript T means transpose and the tilde indicates a functional difference between the

two F's. Differentiation with respect to the design variable D can be written several ways

d1_ dF T dR*
d-'-D= d-'-D+ A

ok ok, oP_,
= +  -yx + -OQ

OF OF_, AT [ OR* OR*. ,'_ (j TOR* (6)
= + + + -5-Z* ) + \ OQ

The discrete adjoint variable A is defined as the solution of (_-)

T

OFN ,

+
= 0; that is,

\OQ) A=
(7)



Thus the coefficientof Q' in Eq. (6) vanishes, so that

dF OF OF , T (OR* OR* _ ,'_dD - OD + _-_-X + A . _ + --_--X ) (8)

The incremental form for iteratively solving Eq. (7) for the discrete adjoint A is

-\ OQ ) = \-ffQ ) + ) =

A"+ 1 = A n + AA n

(9)

where here again, the tilde on the LHS indicates that the discrete operator may be approximate.

Upon convergence, the RHS is zero; that is, Eq. (7) is satisfied. Therefore, the RHS must be a

consistent discrete form agreeing with that on the RHS of Eq. (1), in the sense of Ref.[13]. In

the recent works of Jameson (Refs.[6, 7]) and Ta'asan, et al. (Ref.[8]), the adjoint equations they

introduce are ultimately solved as discrete, incremental, iterative forms somewhat analogous to

Eq. (9). However, the iterative details and construction of the adjoints differ from one another

as well as what is outlined here.

The choice between using the sensitivity function ( Q_ ) or adjoint variable ( A ) approach in

obtaining the single discipline sensitivity derivatives required for MdD via SA appears to depend

upon whether there are a lesser number of active design variables ( D ) or a lesser number of

required output functions ( F ), respectively. The sensitivity function Q' and the adjoint variable

A are related, since, for R*(Q, D, X) = O, F(Q, D, X) = F(Q, D, X) according to Eq. (5) and

upon subtracting Eq. (2) from Eq. (8) one obtains

OF_, AT(OR* OR*.,_
-ff'QQ = k, OD + -.ff_-.A )

(10)

In a multi-point MdD exercise, both procedures may be used at different flow conditions, for

example. In either case, though, the incremental or "delta-" form of the governing discrete

equation set allows some leeway in the numerical algorithms which can be used to obtain

efficient iterative solutions which are consistent discrete derivatives or adjoints. This form also

appears extendable to 3-D CFD codes where computer memory limitations prevent solution by

direct methods for the SD required in MdD.

CONSEQUENCES OF ITERATIVE NONCONVERGENCE

The previous sections have addressed the MdD requirements, implications, and consistency

concerning SD from advanced CFD codes. The equations shown have been derived under the

asumption that R*(Q, D, X) = 0, which is not generally true for iterative CFD solutions. In



fact, for many "practicalengineeringresults" obtainedfrom 3-1) CFD codes,one frequently
accepts"solutions" Q*, where the maximum of R n (over the entire flow field) may have been

reduced only two or three orders of magnitude from its initial value, R 1. One associates the

accuracy of Q* with the discretization (truncation) errors due to the grid size and algorithm; this

can be done only if the errors due to nonconvergence are not larger. The concept of consistent,

discrete derivatives or adjoints, in the sense of Ref.[13], recognizes and admits the truncation

error, but not others which may mask it.

Nonconvergence errors in Q* show up in the coefficients of Eqs. (3) and (4) so that Q'

inherits nonconvergence errors resulting from R n _ 0 as well as those from _ 0. The

Q_ errors then propagate into the SD obtained from Eq. (2). For the adjoint variable formulation,

it is seen from Eq. (5) that if R* _ 0, then/_ _ F. The solution for A from Eqs. (7) or (9)

inherits errors in Q* through the coefficient ; whereas the SD from Eq. (8), _/_, has

errors due to those from both A and Q* (through the partial derivatives of R*). Thus _P _ F

and _ _ _r/_; there may be questions about which pair should be provided to the MdD: F
dP

and _-_ or F and ;TB"

OTHER IMPLICATIONS OF INCREMENTAL ITERATIVE FORM

The incremental iterative form for solution of large linear systems of equations, such as

Eqs. (4) and/or (9), also leads to straightforward or better application of other computational

methodologies. Of particular interest are aspects related to use of parallel processors and

automatic differentiation (AD) techniques or other symbolic differentiation methods. In MdD via

SA, several coarse-grained parallelizations occur naturally. For example, simultaneous analysis

runs of codes from different disciplines and simultaneous analysis runs of a single discipline

code at perturbed input conditions in order to obtain SD by "brute-force" finite differencing can

be done in parallel. Here, however, we refer to fine-grained parallelization of codes to solve

the incremental form equations for QI and A. Again, the freedom allowed in the choice of

approximate operators for the LHS of Eqs. (4) and (9) as opposed to those fixed operators on

the LHS of Eqs. (3) and (7) can be exploited to tailor an algorithm to operate efficiently on a

vector or massively parallel processor.

As pointed out by Griewank (Refs.[20, 21]), AD techniques have not yet been discovered

by most applications-oriented code developers, i.e., the derivitive takers or users. Our naive

perception is that AD is symbolic or exact algebraic differentiation at every uniary- or binary-

operation code level combined with extensive use of the chain rule to compute the (forward)

derivatives of a code output function with respect to its input variables. This is done before

compilation, generating code such that upon execution these derivatives are calculated more-

or-less in lockstep with the computation of that output function. Research on AD techniques

continues (Ref.[22]) and some codes are available (Ref.[23]). Shubin (Ref.[14]) has suggested



thatthesetechniquesmightbeusefulfor generatingJacobians,-_, for CFD codeswherethey
arenot readilyavailablein order to computeSD.

Our initial concernsaboutusingAD to obtainQ_ or A from Eqs. (3) or (7) were related

to how the iterative implicit solution algorithm and its type-dependent operators would be

"differentiated" and what the additional computational memory and time requirements would

be. Preliminary unpublished results of Griewank and coworkers 2 show that a newly developed

AD code, when applied to the iterative implicit solution algorithm (with its solution dependent

operators) for the 2-D transonic small perturbation code of Elbanna and Carlson (Ref.[24]),

produces consistent discrete derivatives. The point to be made here is that for Eqs. (4) or (9),

AD needs to be applied only to get the RHS derivatives; the LHS operators are approximate and

need not be exact Jacobians in order to get consistent discrete Qr or A. In either case, however,

additional derivatives are also required for the RHS of Eqs. (2) or (8) in order to obtain the

required SD. Issues regarding both computer run time and memory storage requirements in AD

are still being actively investigated (See, for example, Ref. [22].). However, it appears that for

equations cast in the iterative incremental form, such as Eqs. (4) or (9) as opposed to Eqs. (3)

or (7), storage for only Jacobian-vector products and not the Jacobian matrix itself is required.

Elbanna and Carlson (Ref.[10]) have used symbolic differentiation methods to obtain the

terms and coefficients required by an Eq. (3) form for the 3-D full potential equation on a

Cartesian grid. These quantities are, of course, those appearing on the RHS of Eq. (4); perhaps

this latter linear equation is the form to be solved, using an efficient approximate operator on

the LHS.

Both the AD and symbolic differentiation techniques, when applied to the discretized code,

should produce consistent discrete derivatives or adjoints. When either of these techniques

reaches a robust routine applications stage then perhaps the quantities needed for the RHS of

Eq. (4) (and/or Eq. (9)) can be generated from efficient Eq. (1) solvers; that is, Eq. (1) with

approximate LHS operator -_. Then SD can be calculated from those same efficient solvers

with RHS terms appropriate to the derivatives and approximate LHS operators fixed at Q*.

CONCLUDING REMARKS

Several observations concerning various computational methodologies relevant to large-

scale, multidisciplinary, gradient-based optimization for engineering systems design problems

have been discussed. These observations address the situation where one (or more) discipline

response(s) required by the optimized design procedure involve the analysis of a system of

nonlinear PDE's which, when discretized, form a very large set of algebraic equations which

must be solved iteratively. This situation occurs, for example, when advanced CFD codes are

2 These findings were communicated by Andreas Griewnnk and coworkers, at Argonne National Labaratory. They applied their newly

developed code ADIFOR, mentioned in the Preface of ReL[22], to the referenced sample transonic flow analysis code provided to them by
NASA.



applied in a multidisciplinary procedure for optimizing an aerospace vehicle design. A means

for satisfying the MdD requirements for gradient information has been presented which appears

to permit: first, some leeway in the CFD solution algorithms which can be used; second, an

expansion to 3-D problems; and third, straightforward use of other computational methodologies.

Many of these observations have been previously discussed as possibilities for doing parts of the

problem more efficiently; the contribution here is observing how they fit together in a mutually

beneficial way.

In particular, an incremental iterative form is proposed for solving the large systems of

linear equations (for either the sensitivity functions Q_ or adjoint variables A) needed in order to

obtain consistent, discrete SD required by a MdD from 3-D CFD codes. This form, called the

"delta" or "correction" form, is commonly used in CFD for obtaining the solution state vector

Q from the nonlinear governing flow equations. It allows one to approximate the LHS operator

of an iterative equation with one which can be adapted for efficiency, machine architecture,

computational algorithm, etc.; all that is required of the approximation is convergence. What

appears on the RHS of the iterative equation is the current iterate evaluation of the condition

to be satisfied; that is, a zero at convergence. It is also noted that symbolic differentiation or

AD techniques may be used to create, from existing CFD codes, the derivative terms needed

to construct the RHS of this incremental iterative equation form from which computation of

consistent, discrete SD follows.



APPENDIX m INDICIAL DEPENDENCIES OF VARIABLES WITH
DIMENSIONAL SIZE AND COMPUTATIONAL ESTIMATES

One purpose of this appendix is to indicate the dependency of the variables introduced in

the main text upon relevant indicial parameters in order to estimate their vector or matrix sizes.

These parameters are governed not only by the specific physical problem and its modelling, but

also by both the CFD solution technique and the optimized MdD procedure. It is assumed here

that the fluid flow problem to be solved by CFD is three dimensional, since this will be the case

for most MdD exercises for aerospace vehicles.

Another purpose of this appendix is to estimate the magnitude of the CFD task in terms of

computational time and number of required solutions. Several indices are included in order to

estimate the total number of solutions required in the MdD process.

Discipline Variables

The variables introduced in the text and listed below occur (that is, can be defined or may be

used) in each of the individual disciplines which participate in a MdD exercise. These variables

are illustrated here by indicating typically what they are in steady aerodynamics.

A

D

F

Q

R

discrete adjoint variable; constructed with respect to a required output

function, F. See Eq. (7) in text.

input design variable. Typically, for aerodynamics, the design variables are

parameters which describe the allowed changes in vehicle surface shape and,

perhaps, flow conditions during the design optimization cycles; that is,

parameters affecting inner and, perhaps, outer boundary conditions for both

the CFD and grid generation Boundary Value Problems (BVP's).

required output function; needed by either another discipline analysis code or

the MdD optimization procedure. Typically, for aerodynamics, the output

functions are quantities such as surface loadings, force and moment

coefficients, stability derivatives, etc. at several (perhaps even a number of)

flight conditions.

solution state vector; required unknown flow variables associated with each

discrete volume grid point.

sensitivity function of the solution state vector, Q, with respect to a design

variable, D.

discrete representation of discipline governing equation; for aerodynamics,

this is the residual vector associated with each flow equation at the discrete

volume grid points.

10



X

X r aX=_-

discrete volume grid point vector; three components for each grid point.

sensitivity of the discrete volume grid point vector, X, with respect to a

design variable, D. For surface-fitted grids typical of advanced CFD codes,

X _ # 0; in fact, it is not even necessarily sparse.

Description of Indices

Indices or labels are associated with each of the discipline variables given above; and said

indices are described here.

d

f

i,j ,k

• ,, j,,1 ,

m

72

o

q

7"

discipline index; typically max(a) is several (disciplines such as

aerodynamics, structures, performance, controls, weights, etc.).

design variable index; max(d) depends on problem and discipline.

output function index; max(f) depends on problem and discipline. For some

disciplines output functions are required at several (or a number of) flight

conditions such as for load cases and polars (See index s below.).

three-dimensional (volume) grid point indices; max(i), max(j), and max(k)

depend on configuration complexity, flow equation approximation, and

spatial resolution required.

two-dimensional (surface) grid point indices; max(i") and max(j") each

typically range from 50% to 65% of max(i) and max(j), respectively.

function evaluation index for solutions required by the optimizer at each

outer loop; max(m) varies from one to ten times several, depending upon the

optimizer.

iteration or time-step index for CFD solution; max(n) depends on algorithm

and convergence level required.

iteration index for outer optimizer loop of MdD; typically max(o) is several

to ten times several.

unknown variable index for components of solution state vector Q at each

volume grid point; max(q) depends on flow equation approximation.

function evaluation index for solutions at different flow or load conditions

for each outer optimizer loop; max(s) from several to 10 times several.

single iteration execution time per grid point; depends on algorithm,

computer, and grid size(with its dependencies).

average time required to generate solution for "single" SD; depends on the

method used.

11



Size Estimates for Indices

Size estimates for typical max values required for indices defined above depend, of course, on

many factors; thus, some assumptions must be made. The number of design variables, max(d),

and the number of required output functions, max(f), depend upon the discipline and MdD

problem. The estimates here are made for the steady external aerodynamics CFD discipline

and a wing-fuselage-vertical tail semi-span HSCT configuration with engines. Note that this

engine simulation is for external airframe/engine integration effects on design; it is not for

the internal propulsion CFD simulation effects nor engine design. In the MdD environment it

appears to us that max(f) will be about the same size as max(d), since detail pressure loads will

have to be supplied to the structures discipline and polars to the performance discipline. Thus,

max(f)-,_max(d)-,_100 to several times 100.

For CFD calculations at sub-, trans-, and supersonic flow conditions required for the HSCT

design, iterative Euler or Navier-Stokes codes are required. Thus, max(q) = 5. Estimates for

max(i x j x k), max(t), and max(n) as well as central memory (CM) and solution time (T)

requirements are given in Table 1. These estimates have been extrapolated from solutions run

at ½ to 43-million grid points in codes which are among the most efficient presently available;

these 3-D codes appear to achieve multigrid (MG) convergence rates (i.e., proportional to the

total number of grid points).

Table 1-- Estimates of Computer Run 'lime and Memory Storage Requirements for 3-D Configuration

Analysis from Several Advanced CFD Codes Which Use Multigrid Acceleration Techniques.

Code

TLNS3D

(Single block)

EUL3D

(Unstructured)

Eqn.

Euler

TLRANS

Euler

Euler

TLRANS

TNS3DMB

(Multiblock)

Ref.

[25], _:

[26, 27],.

max

(i x j x k)
r i

1.5 x 10 6

3.0 x 106

1.5 x 10 6

max(t) max T CM

(sec*/gp/iter) (n) t (hr*) (Mw)
rr_

40 x 10 -6 250 4.2 74

60 x 10 -6 18 160

16 180150 x 10 -6

1.5 X 1061

3.0 x 106

130 x 10 .6

200 x 10 -6

• Single processor Cray 2 time (LaRC Voyager).

t n for reduction of --_ to about 104.

_tEstimates provided by code developer: V.N. Vatsa of NASA, LaRC.

• Estimates provided by code developer: DJ. Mavriplis of ICASE, NASA, LaRC.

§ Estimates provided by code developers: V.N. Vatsa and M.D. Sanetrik of NASA, LaRC.

350

250

250 14 77

350 58 140

12



The estimates given in Table 1 are not in disagreement with those quoted in Ref.[3] (See

their Tables 4. and 5.). The codes listed here are, however, among the fastest listed in Ref.[3].

This, coupled with a perhaps optimistic estimate of the required max(i x j x k) gives minimal

estimates for some of the quantities of interest.

Dependence of Variables on Indices

Strictly speaking, each of the discipline variables previously listed carries the individual

discipline index, a, as well as the outer optimizer loop index, o. This latter index, however, may

appear explicitly only on the functions D, F, and _r/_; that is, those discipline input (design) and

output functions and corresponding sensitivity derivatives seen by the optimizer. Dependencies

of the variables on the other indices is given in Table 2, where the notation v means vector, m

means matrix, whereas c and r are column and row indices, respectively.

Variable

Table 2-- Indicia] Dependence of Variables

Type

A m c

D v r

F v r

Q v

Q' m c

R v

X v

X' m c

* indicates 3-D space coordinates of a grid poiint.

Index

d f ixjxk 3* q

r r

r

r

r

r r

r r

Dimensional Size Estimates for Variables

The length of a vector is the product of the max(indices) denoted r in Table 2; that is, for

example, the length of the vector Q is max(i x j x k) x max(q). The size of a matrix is then

the product of max(indices) denoted r x max(index) denoted c. As already noted, estimates

for the maximum sizes of indices depending on the flow solution are govemed by configuration

complexity, flow equation approximation, CFD solution technique, and required spatial resolution

and iterative convergence. Other indices depend upon the design problem and methods used in

the optimization. The computational molecule (stencil) for typical 3-D CFD codes is order 10 so

13



that Jacobianmatrices,_--_,aresparse(only a few % dense)andhavea banded,nonsymmetric
structure.Table3 summarizesestimateddimensionalsizesof disciplinevariables,basedupon
estimatesin previoussections.

Table3-- Estimatesfor DimensionalSizeof Variables

Variables Type Size

D, F v 10 2

Q, R, X v 10 7

m 10 7 x 10 2A, QI, X I dR,;t17

OR OR
_-_, _

dF
TIT

m 10 7 x 10 7

m i0 2 x 10 2

oF aF m 102 x 10 7
_-O, EV

Computational Task Estimates

The total CFD computational task for steady external aerodynamics in a MdD is dependent

upon a number of quantities already estimated. Many of the output functions F (such as the

detail pressure loadings required by the structures discipline) are generated in a single CFD

code run; however, several (to many) load conditions in the flight envelope are required. This

is also true for the performance discipline's need for polars. The multiplicative factor for such

solutions is max(s). The number of solution evaluations needed by an optimizer in a single cycle

is max(m), whereas the number of optimizer cycles is max(o). Thus the estimated number of

function evaluations, NF, (not including those for SD calculations) required is NF = max(o) x

max(m) x max(s) or using the upper and lower max estimates

10 _< NF <_ 10 4.5 (I1)

For the SD calculation one must first solve for either max(d) sensitivity functions Q' or

max(f) adjoint variables A at each optimizer step and load or flight condition. Then the estimated

number of SD evaluations, NF,, required is NF, = max(o) x max(s) x or or using

max(f)

the upper and lower max estimates

10 a_< NF,<_IO 5'_ (12)
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The estimated total computational time for steady external CFD in a complete MdD, TT,

is then

TT = NF xT + NF, x r

:
'_ (1 + 100(T))NF x T

where the last step follows approximately from Eqs. (11) and (12). In order to get TT to a

reasonable number, it is clear that (_) and NExT must be made as small as possible. The present

incremental iterative form addresses getting (,_) smaller than one, the approximate value for

"brute-force" finite difference determination of the SD. Other approximation techniques, such as

discussed in Refs.[11, 12], or other design optimization strategies, as in Refs.[6-8], for example,

must be used to decrease NF x T.
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